实话实说  
 

首先,我们来看看1〞+8〞结构的二分频音箱系统。这种结构存在着如下几个特点:

1、单元搭配不合理

通常单元的搭配,需要作以下几个方面的考虑:a、阻抗的匹配;b、工作频率的匹配;c、输入功率的匹配;d、灵敏度的匹配;e、音色的匹配;f、优缺点的兼容性等几个方面。这里所说的不合理,主要表现在高低音单元的工作频率不匹配。

    一般情况下,根据分频器原理和声学原理,要求高低音单元在分频点处应有更宽的频率响应。也就是说高音单元的低端响应应比分频点要低一个倍频以

上;低音单元的高端响应也应比分频点要高一个倍频以上。比喻说,分频点为3k,那么高音单元的低端 响应要达到1.5k以下;而低音单元的高端响应要达到6k以上。显然,1〞+8〞的搭配满足不了这一要求。通常,1〞高音单元由于受到输入功率的限制,只能将分频点设置在3k或者在3k以上(当然,有些高素质的高

音单元可以将分频点设置得低一些),这样一来,必须要求8〞单元的高端响应达到6k以上,从声学原理可以知道,8〞单元的实际有效高端响应只能达到2k附近(这是由扬声器单元的物理尺寸所决定的,物理尺寸越大其有效边界频率就越低。虽然,有不少厂家声称8〞单元的有效频率为fo—6k),换句话说,8〞单元的合理的分频点应为1k左右。高音的分频点为3k,低音的分频点为1k,1k与3k 之间便出现了空挡。可想而知,1〞+8〞的系统如何能够处理好1k—3k这一频段的重放呢(众所周知,1k—3k对于音乐和人声的重放是多么重要的)?

2、单元使用不当

我们都知道,3k以下的频率包括了大部分的乐器和人声的音域,如果想让一个适合重放低音和超重低音的8〞单元去完成这一重放重任,结果是可以想象的,音乐所表达的情感和内涵将会因此而打大折扣。

3、低频响应不佳

按理说,低频响应不佳与1〞+8〞的结构没有什么直接关系,而选择1〞+8〞结构的设计者的意图却是很清楚的,就是以较低的成本,取得更多的低频的效果,并给消费者予音箱“高大威猛”的形象(当然,最终是想获取更多的利润)。不然,1〞+8〞的结构就没有其他优势。根据这一思路,8〞单元的参数“BL“值就可以做得比较小(通常高音单元的灵敏度为88dB,8〞单元的灵敏度比较容易做到88dB),导致8〞单元的“Qts”值偏大(Qts=0.60以上),这样就不难推断,该系统的低频响应会是一种什么样的状态。因为一套系统的低频响应很大程度上取决于低频单元“Qts”值的大小。下图是一个典型8〞单元的参数,其中BL=6.1,SPL=87.6,Qts=0.61。当我们选用有效容积为60升(一个不算小的容积)的箱体时,通过CAD软件(LSPCAD4.10)的模拟结果(如图所示)可知,在60Hz附近有4dB的峰,系统处于欠阻尼状态。

                      

至此,我们再看看  1〞+2*8〞结构的二分频系统,对比上述的分析,可以看得出来,1〞+2*8〞结构是1〞+8〞结构的发扬光大、继承和发展,有过之而无不及。1〞+2*8〞结构同样具有上述三个特点,其中低频响应不佳、阻尼不足的表现更为突出。

首先,如果高音单元的灵敏度仍为88dB的话,那么,并联工作的8〞单元的灵敏度只需要85dB就足矣。也就是说这时的8〞单元的“BL” 值还可以做得更小(磁体当然就更小),导致单元的“Qts”值更大(0.60—0.8)。这样,音箱出来的声音就更加“轰轰烈烈”。退一步说,高音单元的灵敏度提升至90dB,双8〞

的8〞单元的灵敏度也只需要87dB而已。再者,由于双8〞单元并联工作,等效的单元参数“Vas”将增加一倍,这也就相应要求箱体的有效容积增加一倍(实际中相当于120—160升以上)。通常厂家很难做到这一点(因为成本增加,箱体体积也比较大),一般是会由单8〞的60升增至双8〞的80升左右。可见,1〞+2*8〞结构的系统的低频阻尼进一步下降,低频响应进一步恶化。其三,1〞+2*8〞结构的箱体较大,箱体正面板的开孔率也过大,使得箱体的强度大为降低,箱体的减振性能大大降低。等等。

     因此,奉劝设计或选购此类的朋友们,三思!三思!

讨论了二分频的扬声器系统,我们来看看三分频的扬声器系统。我们可以注意到市场上有不少这样一种结构的三分频扬声器系统:1〞(高音)+5〞(中音、封闭式盆架)+8〞(低音)。

首先,我们了解一下封闭式盆架5〞中音的特点:

1、频率响应曲线在200—500Hz处有一强烈的谐振峰,高达5—6dB ,有的甚至高达十几个dB。下图是一个典型的5〞(封闭式盆架)中音单元的频率响应曲线和阻抗特性曲线,可以看到在500Hz处有高达15dB 的谐振峰,谐振频率为  Hz。

 

2、低端截止频率过高,以及由于谐振峰的存在,造成低端的可用频率更高。从上例中可以看到,低端的可用频率高达500--600Hz。

3、由于封闭式盆架的存在,使得三分频系统的箱体结构大为简化。因为低音与中音之间不需要隔离的腔体结构,这正是生产厂家所欢迎的。

基于上述5〞中音的特点,在中低音分频点的处理上一般会有两种选择(为节约成本,生产厂家比较推崇简单的分频电路):第一种是将中低音之间的分频点选择为900—1.1kHz,从而避开5〞中音谐振峰的影响;第二种是将中低音之间的分频点选择为300—500Hz,以减少8〞低音单元对声像定位、音场的影响。前者的选择虽然可以避开5〞中音单元的谐振峰的影响,但也带来不少不良后果,比喻说,造成8〞低音单元过多地重放中音频段尤其是人声的重放;由于中低音的分频点选择比较高(约为1k),而通常中高音的分频点约为3—4k,两个分频点的间隔小于2个倍频程,会引起低音单元与高音单元在重放同一频率时产生干涉现象,重放效果进一步恶化。后者把中低音分频点选择为300—500Hz,也有不少负面的作用,比喻说,由于5〞中音单元谐振峰的影响,被迫选择二阶以上分频电路,使得中音单元在分频点处附近的频率响应曲线快速滑落,引起声相位急剧跳变,造成无法与低音单元分频对接(除非低音单元也选择高阶分频,但成本高,厂家不接受),最终使得该频段的重放受到严重的影响而音质恶化。

从上述的分析可知,在三分频的扬声器系统中,采用5〞封闭式盆架中音的搭配,不管选择何种分频器方案均不利于中音频段的重放,请设计者慎用。

在市场上常见的三分频扬声器系统中,还可以见到一种1〞高音+球顶中音+10〞低音的结构,我们再来看看这种系统的表现。

下图是一只球顶中音单元的特性曲线(该球顶中音是某著名企业的经典之作)。

从频率响应曲线中我们不难看出,虽然没有5〞封闭式盆架中音那样的谐振峰,但其低端截止频率也很高,达700Hz,谐振频率也在400Hz附近。根据分频器的原理,该球顶中音的分频点应为1.5k附近(分频频率与响应截止频率或有效边界频率有一个倍频程以上的间隔),而10〞低音单元合理的分频点应为1—1.2k附近,那么1—1.5k就有一空挡,无法实现分频对接。退一步,我们把10〞低音单元的分频点提高到1.5k以上,这样一来,整个中音频段(包括最重要的人声)的重放都由10〞低音单元来承担,可以想象善于重放低音和超重低音的10〞单元用来重放中频(尤其是人声和弦乐)会是怎样的结果。  况且,通常10〞低音单元安装位置比较低(比较接近地面),重放人声的声像就会比较低,听音感觉演员总是趴在地上唱歌一样。显然,重放的效果将会受到严重的影响。

因此,1〞高音+球顶中音+10〞低音的三分频扬声器系统存在着其天生的缺陷。根据上述的分析,读者可以自行对1〞高音+球顶中音+8〞低音的三分频扬声器系统进行分析。可以这样说,一般情况下(当然有例外的)球顶中音尽管它具有一些独特的优点,但不宜在三分频扬声器系统中使用。

 

 

还在努力工作中,请注意更新!

    hifiroom@hifiroom.com

     版权所有(C)2004 HIFI工作室。修改日期: 2004年07月13日